How to Move Columns In Pandas?

4 minutes read

To move columns in pandas, you can simply use the reindex() method along with a list of the new order you want the columns to appear in. For example, if you have a DataFrame named df with columns 'A', 'B', 'C', and 'D', and you want to move column 'D' to the first position, you can use the following code:

1
2
# Move column 'D' to the first position
df = df.reindex(columns=['D', 'A', 'B', 'C'])


This will rearrange the columns in the order specified in the list within the reindex() method. You can also use this method to rearrange multiple columns at once or shift columns to different positions within the DataFrame.


How to organize columns in a specific order in pandas?

You can organize columns in a specific order in pandas by using the reindex() function. Here is an example of how you can do this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import pandas as pd

# Create a sample DataFrame
data = {'A': [1, 2, 3],
        'B': [4, 5, 6],
        'C': [7, 8, 9]}

df = pd.DataFrame(data)

# Define the desired order of columns
desired_columns = ['C', 'A', 'B']

# Reorder the columns in the DataFrame
df = df.reindex(columns=desired_columns)

print(df)


This will rearrange the columns in the DataFrame according to the order specified in the desired_columns list.


What is the function to adjust the order of columns in pandas?

The function to adjust the order of columns in pandas is reindex. Here is an example of how to use it:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
import pandas as pd

# Create a sample DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)

# Adjust the order of columns
df = df.reindex(columns=['B', 'A', 'C'])

print(df)


This will rearrange the columns in the DataFrame df in the order ['B', 'A', 'C'].


How to restructure columns in pandas?

To restructure columns in a pandas DataFrame, you can use the reindex method or the reorder_levels method. Here is an example of each:


Using the reindex method:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
import pandas as pd

# create a sample DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)

# restructure the columns
df = df.reindex(columns=['C', 'A', 'B'])

print(df)


Using the reorder_levels method:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
import pandas as pd

# create a sample DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)

# restructure the columns
df.columns = pd.MultiIndex.from_tuples([('level1', 'C'), ('level2', 'A'), ('level3', 'B')])

print(df)


Both methods will restructure the columns of the DataFrame according to the specified order.


What is the method for moving columns in pandas?

One way to move columns in a pandas DataFrame is by using the reindex method.


Here is an example of how you can move a column to a specific position in a DataFrame:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import pandas as pd

# Create a sample DataFrame
data = {'A': [1, 2, 3],
        'B': [4, 5, 6],
        'C': [7, 8, 9]}

df = pd.DataFrame(data)

# Specify the new column order
new_order = ['C', 'A', 'B']

# Reindex the DataFrame with the new column order
df = df.reindex(columns=new_order)

print(df)


In the above example, we create a sample DataFrame with columns 'A', 'B', and 'C'. We then specify a new column order where we want column 'C' to be moved to the first position. Lastly, we use the reindex method to reorder the columns in the DataFrame based on the new column order.


How to adjust the order of columns in a pandas dataframe?

You can adjust the order of columns in a Pandas DataFrame by reordering them using indexing.


Here is an example code snippet that shows how to reorder columns in a Pandas DataFrame:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
import pandas as pd

# create a sample DataFrame
data = {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
df = pd.DataFrame(data)

# define the new order of columns
new_order = ['C', 'A', 'B']

# reorder columns
df = df[new_order]

print(df)


In this example, the new_order list specifies the new order of columns. By passing this list to the DataFrame indexing operator, the columns will be rearranged accordingly.


How to reorder columns in pandas dataframe?

You can reorder columns in a pandas dataframe by specifying the desired order of columns in a list and then using the reindex method.


Here is an example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import pandas as pd

# Create a sample dataframe
data = {'A': [1, 2, 3],
        'B': [4, 5, 6],
        'C': [7, 8, 9]}
df = pd.DataFrame(data)

# Specify the desired order of columns
new_order = ['C', 'A', 'B']

# Reorder columns in the dataframe
df = df.reindex(columns=new_order)

# Print the updated dataframe
print(df)


This will output:

1
2
3
4
   C  A  B
0  7  1  4
1  8  2  5
2  9  3  6


In this example, we have reordered the columns in the dataframe to be 'C', 'A', and 'B' respectively.

Facebook Twitter LinkedIn Telegram Whatsapp

Related Posts:

To create a pandas dataframe from a complex list, you can use the pd.DataFrame() function from the pandas library in Python. First, make sure the list is in the proper format with appropriate nested lists if necessary. Then, pass the list as an argument to pd....
To work with a pandas list that stores a 2D array, you can use various functions and methods provided by the pandas library. Some common tasks include accessing specific elements in the 2D array using indexing, performing operations on the data such as filteri...
To merge different columns in pandas without including NaN values, you can use the combine_first() function. This function will merge two DataFrames or Series while prioritizing non-null values from the first DataFrame/Series. This means that if a value is pre...
To get the average of a list in a pandas dataframe, you can use the mean() method. This method allows you to calculate the average of numerical values in a specified column or row of the dataframe. Simply select the column or row you want to calculate the aver...
To exclude future dates from an Excel data file using pandas, you can filter the dates based on a specific condition. First, read the Excel file into a pandas DataFrame. Next, create a datetime object for the current date using the datetime module. Then, use t...